
Solutions to select homework problems

September 21, 2018

1. HW II - Q1. 1.1 v(b): The set Mn(kZ) is defined by

Mn(kZ) = {(aij)n×n : aij ∈ kZ} = {kA : A ∈Mn(Z)}.

Let A,B ∈ Mn(kZ). Then A = kA′ and B = kB′, where A′, B′ ∈
Mn(Z). Consequently, we have

A−B = kA′ − kB′ = k(A′ −B′).

As Mn(Z) is a group, we have A′ − B′ ∈ Mn(Z), which would imply
that k(A′−B′) ∈Mn(kZ), and so A−B ∈Mn(kZ). Therefore, by the
subgroup criterion, the assertion follows.

2. HW II - Q3. 1.3 (ii)(c): By definition, D2n, for n ≥ 3, is the group
(of order 2n) comprising the symmetries of a regular n-gon Pn. We
know that the rotation r of Pn about its center by 2π/n generates a
cyclic subgroup 〈r〉 of order n, which contains every other rotational
symmetry in D2n. Let V = {v0, . . . , vn−1} denote the vertices of Pn
appearing in counter-clockwise order. Note that the rotation rk induces
a permutation of V that maps

vi 7→ vj, where j = i+ k (mod n), for 0 ≤ k ≤ n− 1. (1)

Consequently,

No nontrivial rotation can fix any vertex in V. (*)

Now let s be a reflection in D2n. Then s can be of 3 types:

(a) A reflection across a diagonal: This fixes two vertices (i.e. the end
points of the diagonal) and swaps the remaining n − 2 vertices of
Pn in pairs.
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(b) A reflection across a bisector (joining the midpoints of opposite
sides): This swaps all vertices of Pn in pairs.

(c) A reflection across an altitude (from a vertex to the opposite side):
This fixes one vertex and and swaps the remaining n − 1 vertices
of Pn in pairs.

If n is even, then s can only be of types (a) or (b), and so by (*), it
follows that s cannot be equal to rk for any k. Moreover, if n is odd,
then s has to be a reflection of type (c). This means that there exists
a pair vi, vi+1 of adjacent vertices that s swaps (why?). Suppose that
s = rk, for some k. Then by (1), we have that k = n− 1, which would
imply that o(rk) = n > 2, which is impossible as o(s) = 2. Hence,
s 6= rk, for any k, and in conclusion we have that:

A reflection can never be realized as a rotation and vice versa. (2)

Suppose that srj = rk, for some j 6= k. Then s = rk−j, which clearly
contradicts (2). Hence, every element of type srk (or rks) has to be
reflection. Moreover, if srj = srk, for some j 6= k, then rj−k = 1, which
is impossible, as o(r) = n. Therefore, srj 6= srk, when j 6= k, and
therefore, we have that D2n = {1, r, . . . , rn−1, s, sr, . . . , srn−1}.
It remains to show that srk = rn−ks. It suffices to show that (s ◦
rk)(vi) = (rn−k ◦ s)(vi), for each vi ∈ V (why?). Suppose that s is a re-
flection about a line that passes through some vertex vi (i.e a reflection
of type (a) or (c)). Then for j > i, we have

s(vj) = v2i−j (mod n),

which would imply that

s(rk(vi)) = s(vi+k) = vi−k = rn−k(vi) = rn−k(s(vi)),

where all the indices are taken modulo n. Now consider vj, for j > i.
Then we see that

s(rk(vj)) = s(vj+k) = v2i−j−k = rn−k(v2i−j) = rn−k(s(vj)),

where the indices are taken modulo n. A similar argument works for
the case when j < i, and for the case when s is reflection of type (b).
(Check!) From these observations, the assertion follows.
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3. HW II - Q3. 1.3 (ii)(d): We know that each symmetry of R2 is a
finite composition of rotations, translations, and reflections. For θ ∈ R,
let fθ,x denote a rotation of R2 by θ radians about a point x ∈ R2. Note
that any finite composition of a symmetry of type fθ,x with translations
and reflections yields a symmetry that that has the same magnitude
(|θ|) of rotation as fθ,x.

Now, let us suppose that the group of symmetries of R2 is generated
by a finite set of symmetries S. Then S can contain only finitely many
rotations, say fθ1,x1 , . . . , fθn,xn . Now consider any rotation fθ,x, where
θ /∈ {2kπ ± θ1, . . . , 2kπ ± θn : k ∈ Z}. Then by the observations made
above, it follows that fθ,x cannot be written as a finite composition of
elements in S. Hence, the group of symmetries of R2 is not finitely
generated.

4. HW II - Q4: Let G be a nontrivial group. Then there exists g ∈ G
such that g 6= 1. Consider the subgroup H = 〈g〉 generated by g.
Since g ∈ G, it is clear that H 6= {1}, and as H is generated by a
single element, it is cyclic. Hence, the assertion follows. (Note that
this argument works both for the case when G is finite and infinite.)

5. HW II - Q5: Let m,n be positive integers such that m < n. If
D2m < D2n, then by Lagrange’s Theorem, we have that m | n. So
we assume that m | n, and consider the subgroup H of D2n gener-
ated by {rn/m, s}. Then H will contain precisely m rotations, namely
{1, rn/m, r2n/m, . . . , r(m−1)n/m}. Moreover, we see that

rkn/ms = srn−(kn/m) = sr(m−k)n/m.

Consequently, we have that

H = {1, rn/m, . . . , r(m−1)n/m, s, srn/m, . . . , sr(m−1)n/m}.

The map

ϕ : D2m = 〈r′, s′〉 → H : r′ 7→ rn/m and s′ 7→ s

extends to monomorphism between the two groups defined by

ϕ((s′)
j
(r′)

i
) = sjrin/m, for j = 0, 1 and 0 ≤ i ≤ m− 1.

(Verify the claim above!) Therefore, as Imϕ ∼= D2m and Imϕ < D2n,
an isomorphic copy of D2m lies inside D2n. (This is often written as
D2m ↪→ D2n.)

3



6. HW III - Q3: (a) We are given that H is both a proper subgroup
and a subspace of R2. Since H is a subspace, by definition it should
contain the origin (0, 0). Further, we know that any one-dimensional
subspace of R2 is a line through the origin. It remains to show that
each such line is also a subgroup of R2. A typical line Lm of slope m
through the origin satisfies the equation y = mx, and hence as a set

Lm = {(x,mx) : x ∈ R}.

Given points (x1,mx1), (x2,mx2) ∈ Lm, we see that

(x1,mx1)− (x2,mx2) = (x1 − x2,m(x1 − x2)) ∈ Lm.

Hence, by the Subgroup Criterion, we have that Lm < R2.

(b) A left (or right) coset of Lm represented by a vector (a, b) ∈ R2 is
of the form

(a, b) + Lm = {(x+ a,mx+ b) : x ∈ R},

which is the set of points on a line parallel to Lm satisfying the equation

y − b = m(x− a).

Moreover, two distinct vectors (a, b) and (c, d) will represent the same
coset if, and only if,

(a, b)+Lm = (c, d)+Lm ⇐⇒ (a−c, b−d) ∈ Lm ⇐⇒ b−d = m(a−c).

7. HW III - Q4: Let G be a nontrivial group that has no proper sub-
groups. Since G is nontrivial, there exists a non-identity element g ∈ G,
and so 〈g〉 is a nontrivial cyclic subgroup of G. Since G has no proper
subgroups, this would imply that G = 〈g〉, or in other words, G is
cyclic.

Suppose that G is of infinite order. Then by assertion 1.4 (iv) of the
Lesson Plan, it follows that for every k ∈ Z \ {1}, 〈gk〉 is a proper
subgroup of G. This is impossible, as G does not have any proper
subgroups. Therefore, G has to be of finite order.

Let |G| = n. Again, from assertion 1.4 (iv) of the Lesson Plan, we
know that for every proper divisor d of n, 〈gn/d〉 is a proper subgroup
of G. Since G has no proper subgroups, n can have no proper divisors.
Hence, n has to be a prime.
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8. HW IV - 2.3 (iv)(a): Let G be a group of order 4. By the Lagrange’s
Theorem, every non-identity element in G is either of order 2 or 4.

Suppose that g ∈ G is a non-identity element of order 4. Then G = 〈g〉,
and so it follows that G is cyclic. Further, this would imply that the
remaining two non-trivial element in G are g2 and g3, which are or
orders 2 and 4, respectively.

On the other hand, suppose that no non-identity element of G is of
order 4. Then G has to be of the form G = {1, g1, g2, g3}, where
o(gi) = 2, and g3 = g1g2. Note that this structure is analogous to the
structure of U8 = {[1], [3], [5], [7]}, where o([3]) = o([5]) = o([7]) = 2,
and [1] · [5] = [7]. More formally, the map ϕ : G→ U8 defined by

1
ϕ7−→ [1], x1

ϕ7−→ [3], x2
ϕ7−→ [5], x3

ϕ7−→ [7]

is a isomorphism. (Verify!)
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