Solutions to select homework problems

September 21, 2018

1. HW II - Q1. 1.1 v(b): The set $M_n(k\mathbb{Z})$ is defined by

$$M_n(k\mathbb{Z}) = \{ (a_{ij})_{n \times n} : a_{ij} \in k\mathbb{Z} \} = \{ kA : A \in M_n(\mathbb{Z}) \}.$$

Let $A, B \in M_n(k\mathbb{Z})$. Then A = kA' and B = kB', where $A', B' \in M_n(\mathbb{Z})$. Consequently, we have

$$A - B = kA' - kB' = k(A' - B').$$

As $M_n(\mathbb{Z})$ is a group, we have $A' - B' \in M_n(\mathbb{Z})$, which would imply that $k(A' - B') \in M_n(k\mathbb{Z})$, and so $A - B \in M_n(k\mathbb{Z})$. Therefore, by the subgroup criterion, the assertion follows.

2. **HW II - Q3. 1.3 (ii)(c):** By definition, D_{2n} , for $n \ge 3$, is the group (of order 2n) comprising the symmetries of a regular *n*-gon P_n . We know that the rotation *r* of P_n about its center by $2\pi/n$ generates a cyclic subgroup $\langle r \rangle$ of order *n*, which contains every other rotational symmetry in D_{2n} . Let $V = \{v_0, \ldots, v_{n-1}\}$ denote the vertices of P_n appearing in counter-clockwise order. Note that the rotation r^k induces a permutation of *V* that maps

$$v_i \mapsto v_j$$
, where $j = i + k \pmod{n}$, for $0 \le k \le n - 1$. (1)

Consequently,

No nontrivial rotation can fix any vertex in
$$V$$
. (*)

Now let s be a reflection in D_{2n} . Then s can be of 3 types:

(a) A reflection across a diagonal: This fixes two vertices (i.e. the end points of the diagonal) and swaps the remaining n-2 vertices of P_n in pairs.

- (b) A reflection across a bisector (joining the midpoints of opposite sides): This swaps all vertices of P_n in pairs.
- (c) A reflection across an altitude (from a vertex to the opposite side): This fixes one vertex and and swaps the remaining n-1 vertices of P_n in pairs.

If n is even, then s can only be of types (a) or (b), and so by (*), it follows that s cannot be equal to r^k for any k. Moreover, if n is odd, then s has to be a reflection of type (c). This means that there exists a pair v_i, v_{i+1} of adjacent vertices that s swaps (why?). Suppose that $s = r^k$, for some k. Then by (1), we have that k = n - 1, which would imply that $o(r^k) = n > 2$, which is impossible as o(s) = 2. Hence, $s \neq r^k$, for any k, and in conclusion we have that:

A reflection can never be realized as a rotation and vice versa. (2)

Suppose that $sr^j = r^k$, for some $j \neq k$. Then $s = r^{k-j}$, which clearly contradicts (2). Hence, every element of type sr^k (or r^ks) has to be reflection. Moreover, if $sr^j = sr^k$, for some $j \neq k$, then $r^{j-k} = 1$, which is impossible, as o(r) = n. Therefore, $sr^j \neq sr^k$, when $j \neq k$, and therefore, we have that $D_{2n} = \{1, r, \ldots, r^{n-1}, s, sr, \ldots, sr^{n-1}\}$.

It remains to show that $sr^k = r^{n-k}s$. It suffices to show that $(s \circ r^k)(v_i) = (r^{n-k} \circ s)(v_i)$, for each $v_i \in V$ (why?). Suppose that s is a reflection about a line that passes through some vertex v_i (i.e. a reflection of type (a) or (c)). Then for j > i, we have

$$s(v_j) = v_{2i-j \pmod{n}},$$

which would imply that

$$s(r^{k}(v_{i})) = s(v_{i+k}) = v_{i-k} = r^{n-k}(v_{i}) = r^{n-k}(s(v_{i})),$$

where all the indices are taken modulo n. Now consider v_j , for j > i. Then we see that

$$s(r^{k}(v_{j})) = s(v_{j+k}) = v_{2i-j-k} = r^{n-k}(v_{2i-j}) = r^{n-k}(s(v_{j})),$$

where the indices are taken modulo n. A similar argument works for the case when j < i, and for the case when s is reflection of type (b). (Check!) From these observations, the assertion follows. 3. **HW II - Q3. 1.3 (ii)(d):** We know that each symmetry of \mathbb{R}^2 is a finite composition of rotations, translations, and reflections. For $\theta \in \mathbb{R}$, let $f_{\theta,x}$ denote a rotation of \mathbb{R}^2 by θ radians about a point $x \in \mathbb{R}^2$. Note that any finite composition of a symmetry of type $f_{\theta,x}$ with translations and reflections yields a symmetry that that has the same magnitude $(|\theta|)$ of rotation as $f_{\theta,x}$.

Now, let us suppose that the group of symmetries of \mathbb{R}^2 is generated by a finite set of symmetries S. Then S can contain only finitely many rotations, say $f_{\theta_1,x_1}, \ldots, f_{\theta_n,x_n}$. Now consider any rotation $f_{\theta,x}$, where $\theta \notin \{2k\pi \pm \theta_1, \ldots, 2k\pi \pm \theta_n : k \in \mathbb{Z}\}$. Then by the observations made above, it follows that $f_{\theta,x}$ cannot be written as a finite composition of elements in S. Hence, the group of symmetries of \mathbb{R}^2 is not finitely generated.

- 4. **HW II Q4:** Let G be a nontrivial group. Then there exists $g \in G$ such that $g \neq 1$. Consider the subgroup $H = \langle g \rangle$ generated by g. Since $g \in G$, it is clear that $H \neq \{1\}$, and as H is generated by a single element, it is cyclic. Hence, the assertion follows. (Note that this argument works both for the case when G is finite and infinite.)
- 5. **HW II Q5:** Let m, n be positive integers such that m < n. If $D_{2m} < D_{2n}$, then by Lagrange's Theorem, we have that $m \mid n$. So we assume that $m \mid n$, and consider the subgroup H of D_{2n} generated by $\{r^{n/m}, s\}$. Then H will contain precisely m rotations, namely $\{1, r^{n/m}, r^{2n/m}, \ldots, r^{(m-1)n/m}\}$. Moreover, we see that

$$r^{kn/m}s = sr^{n-(kn/m)} = sr^{(m-k)n/m}.$$

Consequently, we have that

$$H = \{1, r^{n/m}, \dots, r^{(m-1)n/m}, s, sr^{n/m}, \dots, sr^{(m-1)n/m}\}.$$

The map

$$\varphi: D_{2m} = \langle r', s' \rangle \to H: r' \mapsto r^{n/m} \text{ and } s' \mapsto s$$

extends to monomorphism between the two groups defined by

$$\varphi((s')^{j}(r')^{i}) = s^{j}r^{in/m}$$
, for $j = 0, 1$ and $0 \le i \le m - 1$.

(Verify the claim above!) Therefore, as $\operatorname{Im} \varphi \cong D_{2m}$ and $\operatorname{Im} \varphi < D_{2n}$, an isomorphic copy of D_{2m} lies inside D_{2n} . (This is often written as $D_{2m} \hookrightarrow D_{2n}$.) 6. **HW III - Q3:** (a) We are given that H is both a proper subgroup and a subspace of \mathbb{R}^2 . Since H is a subspace, by definition it should contain the origin (0,0). Further, we know that any one-dimensional subspace of \mathbb{R}^2 is a line through the origin. It remains to show that each such line is also a subgroup of \mathbb{R}^2 . A typical line L_m of slope mthrough the origin satisfies the equation y = mx, and hence as a set

$$L_m = \{ (x, mx) : x \in \mathbb{R} \}.$$

Given points $(x_1, mx_1), (x_2, mx_2) \in L_m$, we see that

$$(x_1, mx_1) - (x_2, mx_2) = (x_1 - x_2, m(x_1 - x_2)) \in L_m.$$

Hence, by the Subgroup Criterion, we have that $L_m < \mathbb{R}^2$.

(b) A left (or right) coset of L_m represented by a vector $(a, b) \in \mathbb{R}^2$ is of the form

$$(a,b) + L_m = \{(x+a, mx+b) : x \in \mathbb{R}\},\$$

which is the set of points on a line parallel to L_m satisfying the equation

$$y - b = m(x - a).$$

Moreover, two distinct vectors (a, b) and (c, d) will represent the same coset if, and only if,

$$(a,b)+L_m = (c,d)+L_m \iff (a-c,b-d) \in L_m \iff b-d = m(a-c).$$

7. **HW III - Q4:** Let G be a nontrivial group that has no proper subgroups. Since G is nontrivial, there exists a non-identity element $g \in G$, and so $\langle g \rangle$ is a nontrivial cyclic subgroup of G. Since G has no proper subgroups, this would imply that $G = \langle g \rangle$, or in other words, G is cyclic.

Suppose that G is of infinite order. Then by assertion 1.4 (iv) of the Lesson Plan, it follows that for every $k \in \mathbb{Z} \setminus \{1\}, \langle g^k \rangle$ is a proper subgroup of G. This is impossible, as G does not have any proper subgroups. Therefore, G has to be of finite order.

Let |G| = n. Again, from assertion 1.4 (iv) of the Lesson Plan, we know that for every proper divisor d of n, $\langle g^{n/d} \rangle$ is a proper subgroup of G. Since G has no proper subgroups, n can have no proper divisors. Hence, n has to be a prime.

8. **HW IV - 2.3 (iv)(a):** Let G be a group of order 4. By the Lagrange's Theorem, every non-identity element in G is either of order 2 or 4.

Suppose that $g \in G$ is a non-identity element of order 4. Then $G = \langle g \rangle$, and so it follows that G is cyclic. Further, this would imply that the remaining two non-trivial element in G are g^2 and g^3 , which are or orders 2 and 4, respectively.

On the other hand, suppose that no non-identity element of G is of order 4. Then G has to be of the form $G = \{1, g_1, g_2, g_3\}$, where $o(g_i) = 2$, and $g_3 = g_1g_2$. Note that this structure is analogous to the structure of $U_8 = \{[1], [3], [5], [7]\}$, where o([3]) = o([5]) = o([7]) = 2, and $[1] \cdot [5] = [7]$. More formally, the map $\varphi : G \to U_8$ defined by

$$1 \stackrel{\varphi}{\mapsto} [1], x_1 \stackrel{\varphi}{\mapsto} [3], x_2 \stackrel{\varphi}{\mapsto} [5], x_3 \stackrel{\varphi}{\mapsto} [7]$$

is a isomorphism. (Verify!)