Solutions to select homework problems

September 21, 2018

1. HW II - Q1. $1.1 \mathbf{v}(\mathbf{b})$: The set $M_{n}(k \mathbb{Z})$ is defined by

$$
M_{n}(k \mathbb{Z})=\left\{\left(a_{i j}\right)_{n \times n}: a_{i j} \in k \mathbb{Z}\right\}=\left\{k A: A \in M_{n}(\mathbb{Z})\right\}
$$

Let $A, B \in M_{n}(k \mathbb{Z})$. Then $A=k A^{\prime}$ and $B=k B^{\prime}$, where $A^{\prime}, B^{\prime} \in$ $M_{n}(\mathbb{Z})$. Consequently, we have

$$
A-B=k A^{\prime}-k B^{\prime}=k\left(A^{\prime}-B^{\prime}\right)
$$

As $M_{n}(\mathbb{Z})$ is a group, we have $A^{\prime}-B^{\prime} \in M_{n}(\mathbb{Z})$, which would imply that $k\left(A^{\prime}-B^{\prime}\right) \in M_{n}(k \mathbb{Z})$, and so $A-B \in M_{n}(k \mathbb{Z})$. Therefore, by the subgroup criterion, the assertion follows.
2. HW II - Q3. 1.3 (ii)(c): By definition, $D_{2 n}$, for $n \geq 3$, is the group (of order $2 n$) comprising the symmetries of a regular n-gon P_{n}. We know that the rotation r of P_{n} about its center by $2 \pi / n$ generates a cyclic subgroup $\langle r\rangle$ of order n, which contains every other rotational symmetry in $D_{2 n}$. Let $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$ denote the vertices of P_{n} appearing in counter-clockwise order. Note that the rotation r^{k} induces a permutation of V that maps

$$
\begin{equation*}
v_{i} \mapsto v_{j} \text {, where } j=i+k \quad(\bmod n), \text { for } 0 \leq k \leq n-1 . \tag{1}
\end{equation*}
$$

Consequently,
No nontrivial rotation can fix any vertex in V.
Now let s be a reflection in $D_{2 n}$. Then s can be of 3 types:
(a) A reflection across a diagonal: This fixes two vertices (i.e. the end points of the diagonal) and swaps the remaining $n-2$ vertices of P_{n} in pairs.
(b) A reflection across a bisector (joining the midpoints of opposite sides): This swaps all vertices of P_{n} in pairs.
(c) A reflection across an altitude (from a vertex to the opposite side): This fixes one vertex and and swaps the remaining $n-1$ vertices of P_{n} in pairs.

If n is even, then s can only be of types (a) or (b), and so by $\left({ }^{*}\right)$, it follows that s cannot be equal to r^{k} for any k. Moreover, if n is odd, then s has to be a reflection of type (c). This means that there exists a pair v_{i}, v_{i+1} of adjacent vertices that s swaps (why?). Suppose that $s=r^{k}$, for some k. Then by (1), we have that $k=n-1$, which would imply that $o\left(r^{k}\right)=n>2$, which is impossible as $o(s)=2$. Hence, $s \neq r^{k}$, for any k, and in conclusion we have that:

A reflection can never be realized as a rotation and vice versa.
Suppose that $s r^{j}=r^{k}$, for some $j \neq k$. Then $s=r^{k-j}$, which clearly contradicts (2). Hence, every element of type $s r^{k}$ (or $r^{k} s$) has to be reflection. Moreover, if $s r^{j}=s r^{k}$, for some $j \neq k$, then $r^{j-k}=1$, which is impossible, as $o(r)=n$. Therefore, $s r^{j} \neq s r^{k}$, when $j \neq k$, and therefore, we have that $D_{2 n}=\left\{1, r, \ldots, r^{n-1}, s, s r, \ldots, s r^{n-1}\right\}$.
It remains to show that $s r^{k}=r^{n-k} s$. It suffices to show that $(s \circ$ $\left.r^{k}\right)\left(v_{i}\right)=\left(r^{n-k} \circ s\right)\left(v_{i}\right)$, for each $v_{i} \in V$ (why?). Suppose that s is a reflection about a line that passes through some vertex v_{i} (i.e a reflection of type (a) or (c)). Then for $j>i$, we have

$$
s\left(v_{j}\right)=v_{2 i-j}(\bmod n),
$$

which would imply that

$$
s\left(r^{k}\left(v_{i}\right)\right)=s\left(v_{i+k}\right)=v_{i-k}=r^{n-k}\left(v_{i}\right)=r^{n-k}\left(s\left(v_{i}\right)\right),
$$

where all the indices are taken modulo n. Now consider v_{j}, for $j>i$. Then we see that

$$
s\left(r^{k}\left(v_{j}\right)\right)=s\left(v_{j+k}\right)=v_{2 i-j-k}=r^{n-k}\left(v_{2 i-j}\right)=r^{n-k}\left(s\left(v_{j}\right)\right),
$$

where the indices are taken modulo n. A similar argument works for the case when $j<i$, and for the case when s is reflection of type (b). (Check!) From these observations, the assertion follows.
3. HW II - Q3. 1.3 (ii)(d): We know that each symmetry of \mathbb{R}^{2} is a finite composition of rotations, translations, and reflections. For $\theta \in \mathbb{R}$, let $f_{\theta, x}$ denote a rotation of \mathbb{R}^{2} by θ radians about a point $x \in \mathbb{R}^{2}$. Note that any finite composition of a symmetry of type $f_{\theta, x}$ with translations and reflections yields a symmetry that that has the same magnitude $(|\theta|)$ of rotation as $f_{\theta, x}$.
Now, let us suppose that the group of symmetries of \mathbb{R}^{2} is generated by a finite set of symmetries S. Then S can contain only finitely many rotations, say $f_{\theta_{1}, x_{1}}, \ldots, f_{\theta_{n}, x_{n}}$. Now consider any rotation $f_{\theta, x}$, where $\theta \notin\left\{2 k \pi \pm \theta_{1}, \ldots, 2 k \pi \pm \theta_{n}: k \in \mathbb{Z}\right\}$. Then by the observations made above, it follows that $f_{\theta, x}$ cannot be written as a finite composition of elements in S. Hence, the group of symmetries of \mathbb{R}^{2} is not finitely generated.
4. HW II - Q4: Let G be a nontrivial group. Then there exists $g \in G$ such that $g \neq 1$. Consider the subgroup $H=\langle g\rangle$ generated by g. Since $g \in G$, it is clear that $H \neq\{1\}$, and as H is generated by a single element, it is cyclic. Hence, the assertion follows. (Note that this argument works both for the case when G is finite and infinite.)
5. HW II - Q5: Let m, n be positive integers such that $m<n$. If $D_{2 m}<D_{2 n}$, then by Lagrange's Theorem, we have that $m \mid n$. So we assume that $m \mid n$, and consider the subgroup H of $D_{2 n}$ generated by $\left\{r^{n / m}, s\right\}$. Then H will contain precisely m rotations, namely $\left\{1, r^{n / m}, r^{2 n / m}, \ldots, r^{(m-1) n / m}\right\}$. Moreover, we see that

$$
r^{k n / m} s=s r^{n-(k n / m)}=s r^{(m-k) n / m}
$$

Consequently, we have that

$$
H=\left\{1, r^{n / m}, \ldots, r^{(m-1) n / m}, s, s r^{n / m}, \ldots, s r^{(m-1) n / m}\right\}
$$

The map

$$
\varphi: D_{2 m}=\left\langle r^{\prime}, s^{\prime}\right\rangle \rightarrow H: r^{\prime} \mapsto r^{n / m} \text { and } s^{\prime} \mapsto s
$$

extends to monomorphism between the two groups defined by

$$
\varphi\left(\left(s^{\prime}\right)^{j}\left(r^{\prime}\right)^{i}\right)=s^{j} r^{i n / m}, \text { for } j=0,1 \text { and } 0 \leq i \leq m-1
$$

(Verify the claim above!) Therefore, as $\operatorname{Im} \varphi \cong D_{2 m}$ and $\operatorname{Im} \varphi<D_{2 n}$, an isomorphic copy of $D_{2 m}$ lies inside $D_{2 n}$. (This is often written as $D_{2 m} \hookrightarrow D_{2 n}$.)
6. HW III - Q3: (a) We are given that H is both a proper subgroup and a subspace of \mathbb{R}^{2}. Since H is a subspace, by definition it should contain the origin $(0,0)$. Further, we know that any one-dimensional subspace of \mathbb{R}^{2} is a line through the origin. It remains to show that each such line is also a subgroup of \mathbb{R}^{2}. A typical line L_{m} of slope m through the origin satisfies the equation $y=m x$, and hence as a set

$$
L_{m}=\{(x, m x): x \in \mathbb{R}\} .
$$

Given points $\left(x_{1}, m x_{1}\right),\left(x_{2}, m x_{2}\right) \in L_{m}$, we see that

$$
\left(x_{1}, m x_{1}\right)-\left(x_{2}, m x_{2}\right)=\left(x_{1}-x_{2}, m\left(x_{1}-x_{2}\right)\right) \in L_{m} .
$$

Hence, by the Subgroup Criterion, we have that $L_{m}<\mathbb{R}^{2}$.
(b) A left (or right) coset of L_{m} represented by a vector $(a, b) \in \mathbb{R}^{2}$ is of the form

$$
(a, b)+L_{m}=\{(x+a, m x+b): x \in \mathbb{R}\}
$$

which is the set of points on a line parallel to L_{m} satisfying the equation

$$
y-b=m(x-a) .
$$

Moreover, two distinct vectors (a, b) and (c, d) will represent the same coset if, and only if,
$(a, b)+L_{m}=(c, d)+L_{m} \Longleftrightarrow(a-c, b-d) \in L_{m} \Longleftrightarrow b-d=m(a-c)$.
7. HW III - Q4: Let G be a nontrivial group that has no proper subgroups. Since G is nontrivial, there exists a non-identity element $g \in G$, and so $\langle g\rangle$ is a nontrivial cyclic subgroup of G. Since G has no proper subgroups, this would imply that $G=\langle g\rangle$, or in other words, G is cyclic.

Suppose that G is of infinite order. Then by assertion 1.4 (iv) of the Lesson Plan, it follows that for every $k \in \mathbb{Z} \backslash\{1\},\left\langle g^{k}\right\rangle$ is a proper subgroup of G. This is impossible, as G does not have any proper subgroups. Therefore, G has to be of finite order.
Let $|G|=n$. Again, from assertion 1.4 (iv) of the Lesson Plan, we know that for every proper divisor d of $n,\left\langle g^{n / d}\right\rangle$ is a proper subgroup of G. Since G has no proper subgroups, n can have no proper divisors. Hence, n has to be a prime.
8. HW IV - 2.3 (iv)(a): Let G be a group of order 4. By the Lagrange's Theorem, every non-identity element in G is either of order 2 or 4 .

Suppose that $g \in G$ is a non-identity element of order 4. Then $G=\langle g\rangle$, and so it follows that G is cyclic. Further, this would imply that the remaining two non-trivial element in G are g^{2} and g^{3}, which are or orders 2 and 4 , respectively.
On the other hand, suppose that no non-identity element of G is of order 4. Then G has to be of the form $G=\left\{1, g_{1}, g_{2}, g_{3}\right\}$, where $o\left(g_{i}\right)=2$, and $g_{3}=g_{1} g_{2}$. Note that this structure is analogous to the structure of $U_{8}=\{[1],[3],[5],[7]\}$, where $o([3])=o([5])=o([7])=2$, and $[1] \cdot[5]=[7]$. More formally, the map $\varphi: G \rightarrow U_{8}$ defined by

$$
1 \stackrel{\varphi}{\mapsto}[1], x_{1} \stackrel{\varphi}{\mapsto}[3], x_{2} \stackrel{\varphi}{\mapsto}[5], x_{3} \stackrel{\varphi}{\mapsto}[7]
$$

is a isomorphism. (Verify!)

