Solutions to select homework problems

September 21, 2018

1. HW II - Q1. 1.1 v(b): The set M, (kZ) is defined by
Mn(k’Z) = {(ai]’)an L Qg € kZ} = {kA A€ Mn(Z)}

Let A,B € M,(kZ). Then A = kA’ and B = kB’, where A", B’ €
M, (Z). Consequently, we have

A—B=kA — kB =k(A' - B).

As M, (Z) is a group, we have A’ — B’ € M,(Z), which would imply
that k(A" — B') € M,,(kZ), and so A— B € M, (kZ). Therefore, by the
subgroup criterion, the assertion follows.

2. HW II - Q3. 1.3 (ii)(c): By definition, D,,, for n > 3, is the group
(of order 2n) comprising the symmetries of a regular n-gon P,. We
know that the rotation r of P, about its center by 27/n generates a
cyclic subgroup (r) of order n, which contains every other rotational
symmetry in Dy,. Let V = {vg,...,v,_1} denote the vertices of P,
appearing in counter-clockwise order. Note that the rotation r* induces
a permutation of V' that maps

v; = vj, where j =i+ k (mod n), for 0 <k <n—1. (1)
Consequently,
No nontrivial rotation can fix any vertex in V. (*)

Now let s be a reflection in Ds,. Then s can be of 3 types:

(a) A reflection across a diagonal: This fixes two vertices (i.e. the end
points of the diagonal) and swaps the remaining n — 2 vertices of
P, in pairs.



(b) A reflection across a bisector (joining the midpoints of opposite
sides): This swaps all vertices of P, in pairs.

(c) A reflection across an altitude (from a vertex to the opposite side):
This fixes one vertex and and swaps the remaining n — 1 vertices
of P, in pairs.

If n is even, then s can only be of types (a) or (b), and so by (*), it
follows that s cannot be equal to r* for any k. Moreover, if n is odd,
then s has to be a reflection of type (c). This means that there exists
a pair v;, v;41 of adjacent vertices that s swaps (why?). Suppose that
s =k for some k. Then by (1), we have that k = n — 1, which would
imply that o(r¥) = n > 2, which is impossible as o(s) = 2. Hence,
s # r¥ for any k, and in conclusion we have that:

A reflection can never be realized as a rotation and vice versa. (2)

Suppose that sr? = r*, for some j # k. Then s = 777, which clearly
contradicts (2). Hence, every element of type sr* (or r*s) has to be
reflection. Moreover, if s77 = sr*, for some j # k, then r7=% = 1, which
is impossible, as o(r) = n. Therefore, srf # sr* when j # k, and
therefore, we have that Dy, = {1,7,...,7" L s sr ... sr" 1}

It remains to show that sr* = r"“*s. It suffices to show that (s o
r8)(v;) = (1% o0 s)(v;), for each v; € V (why?). Suppose that s is a re-
flection about a line that passes through some vertex v; (i.e a reflection
of type (a) or (c)). Then for j > i, we have

S(Uj) = V2i—j (mod n)»
which would imply that
s(rf(v:)) = s(vipr) = v = 7" (v;) = "7 (s(w),

where all the indices are taken modulo n. Now consider v;, for j > 1.
Then we see that

S(Tk(vj)) = 5(Vj4r) = Voimjk = Tn_k(“%—j) = Tn_k(s(vj))>

where the indices are taken modulo n. A similar argument works for
the case when j < i, and for the case when s is reflection of type (b).
(Check!) From these observations, the assertion follows.



3. HW II - Q3. 1.3 (ii)(d): We know that each symmetry of R? is a
finite composition of rotations, translations, and reflections. For 6 € R,
let fy. denote a rotation of R? by 6 radians about a point € R?. Note
that any finite composition of a symmetry of type fy , with translations
and reflections yields a symmetry that that has the same magnitude
(16]) of rotation as fo ..

Now, let us suppose that the group of symmetries of R? is generated
by a finite set of symmetries S. Then S can contain only finitely many
rotations, say fg, o1, fo,.2,- NOW consider any rotation fp,, where
0 ¢ {2kr £ 6,,...,2kr +£0,, : k € Z}. Then by the observations made
above, it follows that fy, cannot be written as a finite composition of
elements in S. Hence, the group of symmetries of R? is not finitely
generated.

4. HW 1II - Q4: Let G be a nontrivial group. Then there exists g € G
such that ¢ # 1. Consider the subgroup H = (g) generated by g.
Since g € G, it is clear that H # {1}, and as H is generated by a
single element, it is cyclic. Hence, the assertion follows. (Note that
this argument works both for the case when G is finite and infinite.)

5. HW 1II - Q5: Let m,n be positive integers such that m < n. If
Dy, < Dy, then by Lagrange’s Theorem, we have that m | n. So
we assume that m | n, and consider the subgroup H of D, gener-

ated by {r"/™ s}. Then H will contain precisely m rotations, namely
{1,pn/m p2nim p(m=bn/mY - Noreover, we see that

rkn/m kn/m) (mfk)n/m.

s = s = sr

Consequently, we have that
H={1,/m . pln=bn/m g gen/m o gpm=tin/my
The map
@ : Doy = (r',s") = H 7' — "™ and s' — s
extends to monomorphism between the two groups defined by
o((s'Y (")) = ™™ for j=0,1and 0 <i < m — 1.

(Verify the claim above!) Therefore, as Im ¢ = Dy, and Im ¢ < Dy,
an isomorphic copy of Dy, lies inside Ds,. (This is often written as
ng — D2n)



6. HW III - Q3: (a) We are given that H is both a proper subgroup
and a subspace of R%. Since H is a subspace, by definition it should
contain the origin (0,0). Further, we know that any one-dimensional
subspace of R? is a line through the origin. It remains to show that
cach such line is also a subgroup of R%2. A typical line L,, of slope m
through the origin satisfies the equation y = max, and hence as a set

L, ={(z,mx) : x € R}.
Given points (x1, mz1), (2, mxy) € L, we see that
(x1, mx1) — (z2, mxa) = (x1 — T2, m(T1 — X2)) € Lyy,.

Hence, by the Subgroup Criterion, we have that L,, < R2.

(b) A left (or right) coset of L,, represented by a vector (a,b) € R? is
of the form

(a,b) + L, = {(z + a,mz +b) : x € R},
which is the set of points on a line parallel to L,, satisfying the equation
y—b=m(z—a).

Moreover, two distinct vectors (a,b) and (¢, d) will represent the same
coset if, and only if,

(a,b)+L,, = (¢,d)+L,, < (a—c,b—d) € L,, <= b—d =m(a—c).

7. HW III - Q4: Let G be a nontrivial group that has no proper sub-
groups. Since G is nontrivial, there exists a non-identity element g € G,
and so (g) is a nontrivial cyclic subgroup of GG. Since G has no proper
subgroups, this would imply that G = (g), or in other words, G is
cyclic.

Suppose that G is of infinite order. Then by assertion 1.4 (iv) of the
Lesson Plan, it follows that for every k € Z \ {1}, {¢*) is a proper
subgroup of G. This is impossible, as G does not have any proper
subgroups. Therefore, G has to be of finite order.

Let |G| = n. Again, from assertion 1.4 (iv) of the Lesson Plan, we
know that for every proper divisor d of n, (¢g"/%) is a proper subgroup
of G. Since G has no proper subgroups, n can have no proper divisors.
Hence, n has to be a prime.



8. HW IV - 2.3 (iv)(a): Let G be a group of order 4. By the Lagrange’s
Theorem, every non-identity element in G is either of order 2 or 4.

Suppose that g € G is a non-identity element of order 4. Then G = (g),
and so it follows that G is cyclic. Further, this would imply that the
remaining two non-trivial element in G are g*> and ¢®, which are or
orders 2 and 4, respectively.

On the other hand, suppose that no non-identity element of G is of
order 4. Then G has to be of the form G = {1,g1,¢2, 93}, where
o(g;) = 2, and g3 = g1¢92. Note that this structure is analogous to the
structure of Us = {[1], [3], [5], [7]}, where o([3]) = o([5]) = o([7]) = 2,
and [1] - [5] = [7]. More formally, the map ¢ : G — Uy defined by

15 (1], 21 S [3], 22 & 5], 25 &> [7]

is a isomorphism. (Verify!)



